亲,双击屏幕即可自动滚动
第28章 精于此道者,多享遐龄(2/2)

=835.=唯有在数学领域,以及某种程度上在诗歌领域,独创性可于早年达成,但即便如此也极为罕见(牛顿与济慈便是例证),且直至青春期结束后才会显着显现。

——哈夫洛克·埃利斯《英国天才研究》(伦敦,1904年)第142页

惟数学之域,及诗道一隅,年少而能创新者,或有之焉。然即在此二者,亦罕觏也。牛顿、济慈,堪称其例。然其才名显着,必待弱冠既冠之后,方得彰显于世。

——哈夫洛克·埃利斯《英国天才研究》(伦敦,1904年)第142页

=836.=盎格鲁-丹麦人似乎整体具备一种其他英格兰地区本土人群所缺乏的数学天赋,而精确科学正是盎格鲁-丹麦人得以胜出的领域。[注4]

——哈夫洛克·埃利斯《英国天才研究》(伦敦,1904年)第69页

[注4:剑桥的数学倾向源于其吸纳了几乎整个盎格鲁-丹麦地区的人才。]

盎格鲁-丹麦之民,天赋擅数,迥异于英伦他邑。故于格物致知之学,独擅胜场,卓然不群。[注4]

——哈夫洛克·埃利斯《英国天才研究》(伦敦,1904年)第69页

[注4]剑桥素重算学,盖因吸纳盎格鲁-丹麦诸地俊才,故能蔚然成风也。

=837.=纵观世界历史,从未有哪个民族比盎格鲁-撒克逊人更不喜爱抽象推理……人们信奉常识与妥协,从哲学原理出发的逻辑演绎不仅被立法者,也被我们所有最博学的专业人士所怀疑。

——约翰·佩里

《数学教学》(伦敦,1902年)第20-21页

观乎古今,诸族之中,厌抽象之思、恶玄理之辩者,莫若盎格鲁-撒克逊。彼辈崇实务,尚折衷,于哲理推演之学,立法者疑之,鸿儒硕学亦忌之。

——约翰·佩里《数学教学》(伦敦,1902年)第20-21页

=838.=空间直觉的精确程度在不同个体间,甚至可能在不同种族间存在差异。似乎强烈而本真的空间直觉是条顿民族尤为突出的特质,而批判的、纯粹的逻辑意识则在拉丁民族与希伯来民族中发展得更为充分。若按弗朗西斯·高尔顿在遗传研究中提出的思路对这一主题展开全面探究,或许会颇具趣味。

——费利克斯·克莱因《埃文斯顿学术讲座》(纽约,1894年)第46页

人之悟解空间,敏钝有殊,或因族类而异。条顿之民,天性颖悟,于空间之理,直觉锐敏;拉丁、希伯来之族,则精于思辨,逻辑谨严。若循高尔顿遗传之论,详加考索,必有所得。

——费利克斯·克莱因《埃文斯顿学术讲座》(纽约,1894年)第46页

=839.=这(即研究数学能让人类心智的所有能力协调运作的事实)解释了为何所有最伟大的分析艺术大师——数学万神殿中的主神们——都异常长寿。莱布尼茨享年70岁,欧拉76岁,拉格朗日77岁,拉普拉斯78岁,高斯78岁;被认为是圆锥曲线发明者的柏拉图将数学视为研习之乐,称其为哲学的抓手或辅助、灵魂的良药,且据说他从未有一天不发明新定理,享年82岁;牛顿作为其民族的巅峰与荣耀,享年85岁;阿基米德在天赋上或许最接近牛顿,享年75岁,若不是被派去带他见罗马将军的那位不耐烦且无礼的士兵杀死,他极可能活到100岁——当时他正处于心智鼎盛期,且恰在解算一道难题;毕达哥拉斯(我认为“数学家”一词正是起源于他的学派,尽管当时的含义比现在更宽泛)是几何学的第二位奠基人,发明了以他命名的不朽定理,预见了无疑被误称的哥白尼理论,发现了正多面体与音乐法则,堪称这一荣誉金字塔的顶端人物(若传说可信)——他在埃及研习22年,在巴比伦研习12年,56或57岁时在大希腊开办学校,60岁后娶年轻妻子,直至99岁去世前仍精力充沛地从事研究。数学家长寿且永葆青春,其灵魂之翼不会早早脱落,灵魂之孔隙也不会被世俗尘嚣扬起的泥土颗粒堵塞。

——J.J.西尔维斯特《英国科学促进会主席致辞》;《数学论文集》第二卷(1908年)第658页

数学之道,能调心益智,故精于此道者,多享遐龄。莱布尼茨七十而终,欧拉七十六,拉格朗日七十七,拉普拉斯七十八,高斯亦七十八。昔柏拉图创圆锥之学,以数学为哲思之钥、心灵之药,日新其知,寿至八十二。牛顿为英伦冠冕,享寿八十五。阿基米德才比牛顿,七十五岁遇害,时方解算难题,若免横祸,或可期颐。毕达哥拉斯立算学之名(古之“数学家”义广于今),创勾股之定理,预察地动之理,发现正体音律。其游学埃及廿二载,遍历巴比伦十二秋,五十七岁于大希腊设帐授徒,六十后娶妻,至九十九岁,犹勤研不辍。故知治数学者,寿且康强,灵台清明,不染尘俗。

——J.J.西尔维斯特《英国科学促进会主席致辞》;《数学论文集》第二卷(1908年)第658页

=840.=国际象棋游戏一直吸引着数学家,且有理由认为,具备高超棋力在许多方面与具备卓越数学能力极为相似。需要学习不同棋子的走法——兵、马、象、车、后和王,棋盘上存在格子的特定组合方式,如横排、对角线等;棋子受特定规则约束其移动,还有其他规则约束棋手……人们只需增加棋子数量、扩大棋盘范围、制定约束棋子或棋手的新规则,便能大致理解数学的本质。

——J.b.肖《数学是什么?》,《美国数学会通报》第18卷(1912年)第386-387页

弈棋之戏,素为算家所好。盖善弈者与精算者,其智略相通也。棋盘有格,纵横斜正,各成妙势;棋子有类,车马象兵,动循定规。若广增棋子,拓大棋局,更立新章,则与数学之理,若合符契矣。

——J.b.肖《数学是什么?》,《美国数学会通报》第18卷(1912年)第386-387页

=841.=每个人都乐于加入对哲学家或政治家、诗人或演说家、艺术家或建筑师的褒贬之中。但谁能评判一位数学家?谁能为汉密尔顿的四元数撰写评论,向我们阐明它比牛顿的流数法优越在何处?——希尔,托马斯。《数学中的想象力》;《北美评论》第85卷,第224页。

天下之人,评骘哲士、政要,论说诗人、辩客,品藻画师、大匠,皆乐而为之。然孰能评数学家乎?孰能为哈密尔顿之四元术作论,明其胜牛顿流数法之处耶?

——托马斯·希尔《数学中之想象力》;《北美评论》第八十五卷,第二百二十四页

@流岚小说网 . www.liulan.cc
本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与流岚小说网立场无关。
如果侵犯了您的权利,请与我们联系,我们将在24小时之内进行处理。任何非本站因素导致的法律后果,本站均不负任何责任。