亲,双击屏幕即可自动滚动
第69章 螺旋之歌(2/2)

关乎运动学与静力学——

这是数学中最美妙的事物。

一个螺旋上的力,

与另一个螺旋上的运动,

通常会做一些功,

其大小可通过

角度、力以及我们所谓的

虚系数来计算。

现在将旋转转化为力,

再将力转化为旋转;

我们可以断言,

尽管发生了转化,功却保持不变。

若两个螺旋不做功,

它们就会被称为互反螺旋。

五个数可以定义一个螺旋,

六个数可以定义一个螺旋运动;

因为四个数能确定轴线,

再一个数能确定螺距;

因此,我们总能设法找到

一个与五个螺旋互反的螺旋。

两个、三个、四个或五个螺旋组合起来

(这里不涉及六个),

会产生其他螺旋,这些螺旋

被限定在一个螺旋复形中。

由此,我们能对

运动的自由度与约束获得最清晰的认识。

在第三类复形中,

每个点都有三个不同的螺旋,

若你选定一个方向,

就会有一个螺旋符合你的想法;

而第三阶复形

可以是自身的互反复形。

在第四类复形中,无论你到达何处,

都会发现一个螺旋锥,

在第五类复形的每条直线上,

恰好有一个螺旋;

在这个内容丰富的复形的每个点上,

都有一个给定螺距的螺旋平面。

但我没有时间详述

阶与度;

也无暇谈及冲量、能量、力

以及互反性。

所有这些乃至更多,对于微小运动,

鲍尔博士都已论述过。

——佚名

《螺旋铭》

夫形之动也,刚柔殊态,境遇异方。然凡物移于二位之间,必循螺旋之径。其体也,回旋而进滑——此乃吾歌之要旨也。

螺旋之距,乘其转幅,则得滑行之程。距若无穷,则为直进;距若归零,则为纯旋。

二旋相合,其度任意,乃生第三旋动。其度可度,依平四之法(此理甚明)。其轴交于节线,节线垂于双旋,乃生神圣之形,雅称三折直纹,吾名之曰柱形螺面。

绕定轴而转,犹施力于直。若不以力偶称之,谬矣!——细思之,直线非徒方向而已。力偶与直进,诸般相契;故螺旋之中,蕴动静之妙谐,乃算学至美者也。

一旋之力,与另旋之动,常有所功。其量可计,依角、力及所谓虚系。今化转为力,复化力为转;虽形变而功恒。若二旋无功,则称互反。

五数定一旋,六数定旋动。盖四数以定轴,一数以定距;故恒可求得与五旋互反之旋。

二、三、四、五旋相合(不及于六),生他旋焉,束于复形。由是得明运动之自由与约束。

第三复形,点各有三异旋。择向而行,必得一旋应之;而三阶复形,可为己之互反。

第四复形,行处皆见旋锥。第五复形之直线上,恰得一旋;此丰盈复形之每点,皆有定距旋面。

然吾未暇详阶度之分,亦无暇论冲量、能力、力及互反。凡此种种,至于微动,鲍尔子已述备矣。

——无名氏

@流岚小说网 . www.liulan.cc
本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与流岚小说网立场无关。
如果侵犯了您的权利,请与我们联系,我们将在24小时之内进行处理。任何非本站因素导致的法律后果,本站均不负任何责任。