亲,双击屏幕即可自动滚动
第70章 通用之密钥(1/2)

第十九章

微积分及相关主题

1901.可以说,微分和积分的概念——其起源确实可追溯至阿基米德——是通过开普勒、笛卡尔、卡瓦列里、费马和沃利斯的研究被引入科学领域的……而微分与积分是“互逆”运算这一重大发现,则归功于牛顿和莱布尼茨。——索菲斯·李,《莱比锡报告》,第47卷(1895年),数学-物理类,第53页。

微分、积分之念,其源确可溯至阿基米德,由开普勒、笛卡尔、卡瓦列里、费马、沃利斯诸贤之研,始入科学之域。而微分与积分乃“互逆”运算,此重大发现,当归牛顿、莱布尼茨。——索菲斯·李《莱比锡报告》,卷四十七(1895年),数理类,页五十三。

1902.看来,微分学的真正发明者费马认为,这一演算源自有限差分演算,方法是忽略高阶无穷小量,只保留低阶无穷小量……牛顿通过他的流数法,使这一演算更具解析性,他还凭借二项式定理的发明,简化并推广了这一方法。莱布尼茨则以其极为巧妙的符号记法,为微分学增色不少。——拉普拉斯,《论定积分等》;《全集》,第12卷(巴黎,1898年),第359页。

观之,微分学真发明者费马,谓此学源于有限差分法,盖略去高阶无穷小,仅存低阶者也。牛顿以流数法,使此学更具解析之性,又创二项式定理,简化而推广之。莱布尼茨则以精妙符号,为微分学增辉甚多。——拉普拉斯《论定积分等》;《全集》,卷十二(巴黎,1898年),页三百五十九。

1903.任何希望理解数学真理的依据以及微积分中晦涩过程含义的人,都应当研读皮科克教授的《代数学》和休厄尔先生的《极限论》;即便掌握了这些论着,学生仍需从孔德先生的着作中学习更多相关知识——在其卓越的着作中,堪称最精彩的部分之一,便是他真正可以说开创了高等数学哲学的内容。——约翰·斯图尔特·穆勒,《逻辑体系》,第3卷,第24章,第6节。

凡欲明数学真理之依据、微积分中晦涩过程之要义者,必研读皮科克教授《代数学》、休厄尔先生《极限论》。即便通此二书,仍需从孔德先生着作中求深造——其宏着中最精妙者,莫过于开创高等数学哲学之篇。——约翰·斯图尔特·穆勒《逻辑体系》,卷三,第二十四章第六节。

1904.倘若我们必须局限于一种符号体系,那么毫无疑问,莱布尼茨所发明的符号,比流数符号更适合无穷小演算的大多数应用场景,而对于某些领域(如变分法),它实际上几乎是不可或缺的。——w.w.R.鲍尔,《数学史》(伦敦,1901年),第371页。

若必拘于一种符号体系,则莱布尼茨所创,远胜流数符号,更宜无穷小演算之多数应用。于某些领域(如变分法),则几为必需。——w.w.R.鲍尔《数学史》(伦敦,1901年),页三百七十一。

1905.无穷小方法与极限方法(当仅采用极限方法时)的区别在于:后者通常会保留高阶无穷小量直至计算结束,再将其忽略;而无穷小方法则从一开始就忽略这类量,因为它确信这些量不会影响最终结果——当我们取极限时,它们必然会消失。——b.威廉森,《不列颠百科全书》,第9版;“无穷小演算”条目,第14节。

无穷小法与极限法(专主极限时)之别:后者常留高阶微量至演算终了,而后弃之;前者则初即略去,盖信其不影响终果——取极限时,自当消弭也。——b.威廉森《不列颠百科全书》第九版,“无穷小演算”条第十四节。

1906.当我们领会了无穷小方法的精神,并通过最初与最终比的几何方法或导函数的解析方法验证了其结果的精确性之后,我们便可以将无穷小量用作一种可靠且有效的工具,来简化和缩短我们的证明过程。——拉格朗日,《分析力学》,序言;《全集》,第2卷(巴黎,1888年),第14页。

悟无穷小法之精髓,又以初末比几何法或导函数解析法证其结果之精确,则可借无穷小量为可靠利器,简捷证明之程。——拉格朗日《分析力学》序;《全集》,卷二(巴黎,1888年),页十四。

1907.无穷小方法的本质优点与崇高之处在于:它操作起来如同最简单的近似方法那般简便,同时又具备普通计算结果般的精确性。倘若我们借口要在整个过程中保证更高的精确性,而用一种不够便捷、且与自然事件可能的发展过程不太协调的方法替代莱布尼茨给出的简便方法,那么这种优势就会丧失,或者至少会大打折扣……

对无穷小方法提出的异议,是基于一种错误的假设,即认为在实际计算中忽略无穷小量所产生的误差,会一直保留在计算结果中。——拉扎尔·卡诺,《关于无穷小演算的形而上学思考》(巴黎,1813年),第215页。

无穷小法之至妙,在操作如最简近似法之易,精确若寻常计算之果。若借口全程求更精,以繁冗、不契自然之法代莱布尼茨之简法,则此长必失,或大损矣。

诋无穷小法者,误谓演算中略去无穷小所致之误,终存于结果。——拉扎尔·卡诺《关于无穷小演算的形而上学思考》(巴黎,1813年),页二百一十五。

1908.极限比的定义,与无穷小量的定义相比,既不更难,也不更易。——拉扎尔·卡诺,《关于无穷小演算的形而上学思考》(巴黎,1813年),第210页。

本章未完,点击下一页继续阅读。

@流岚小说网 . www.liulan.cc
本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与流岚小说网立场无关。
如果侵犯了您的权利,请与我们联系,我们将在24小时之内进行处理。任何非本站因素导致的法律后果,本站均不负任何责任。