亲,双击屏幕即可自动滚动
第70章 通用之密钥(2/2)

极限比之定义,与无穷小量之定义,难易相当。——拉扎尔·卡诺《关于无穷小演算的形而上学思考》(巴黎,1813年),页二百一十。

1909.极限是一个独特且基本的概念,在证明高等几何的命题时,它的作用无法被任何其他假设和定义的组合所取代。刚才提到的那条公理——“在极限处成立的,在极限上也成立”——包含在极限概念本身之中;这一原理及其推论,引出了构成高等数学主题的所有结果,无论这些结果是通过对消逝三角形的研究、通过微分学的过程,还是以其他任何方式证明的。——威廉·休厄尔,《归纳科学哲学》,第一部分,第二卷,第十二章,第一节(伦敦,1858年)。

极限者,独特而根本之念也。证高等几何命题时,其用非他种假设、定义所能替代。“趋近极限时为真,达于极限亦为真”,此公理本含于极限之念中。此理及其推论,生高等数学之一切结果,无论借消逝三角形、微分学过程,或他法证得。——威廉·休厄尔《归纳科学哲学》,第一部分第二卷第十二章第一节(伦敦,1858年)。

1910.微分学拥有与其他代数运算同等的精确性。——拉普拉斯,《概率的分析理论》,引言;《全集》,第7卷(巴黎,1886年),第37页。

1911.流数法或许是任何时代最伟大、最精妙、最崇高的发现之一:它为我们打开了一个新的世界,仿佛将我们的知识拓展至无穷;它带着我们超越了那些似乎为人类心智划定的界限,至少是无限地超越了古代几何学所局限的范围。——查尔斯·赫顿,《哲学与数学词典》(伦敦,1815年),第一卷,第525页。

微分学之精确,与他种代数运算无异。——拉普拉斯《概率的分析理论》引言;《全集》,卷七(巴黎,1886年),页三十七。

1912.自然界中物质的状态和条件处于永恒的流动之中,只要这些性质可以被归为数量或进行测量(无论是实际的还是想象的),就都能通过牛顿的方法(流数法)进行有效的研究。借助牛顿的微积分,自然变化在每一时刻的作用方式,都能像这些文字如实表达我此刻的想法一样被准确描绘。由此,通过纯粹的计算,就能以确凿无疑的确定性确定控制整个过程的规律。——J.w.梅勒,《化学和物理专业学生的高等数学》(伦敦,1902年),序章。

自然界中物质之态,恒处于流转。若其性可归为数、可度量(无论实虚),皆可借牛顿流数法深究。凭牛顿微积分,自然变化每刻之作用,如实录吾此刻所思。由此,纯以计算,可确凿定控制全程之律。——J.w.梅勒《化学和物理专业学生的高等数学》(伦敦,1902年),序章。

1913.从最广泛的意义上来说,微积分是我们理解物理真理最有力的工具。——w.F.奥斯古德,《美国数学会通报》,第13卷(1907年),第467页。

广义而言,微积分乃吾人领悟物理真谛之最利器也。——w.F.奥斯古德《美国数学会通报》,卷十三(1907年),页四百六十七。

1914.(无穷小)分析是人类智慧迄今创造出的最强大的思维工具。——w.b.史密斯,《无穷小分析》(纽约,1898年),序言,第vii页。

(无穷小)分析者,人类智识所创最锐之思维器也。——w.b.史密斯《无穷小分析》(纽约,1898年),序,页七。

1915.流数法是一把通用的钥匙,现代数学家借助它解开几何学的奥秘,进而揭开自然的奥秘。正是凭借流数法,他们才能在发现定理和解决问题方面远超古人,因此,在当今被视为深奥几何学家的人当中,流数法的运用即便不是唯一,也是主要的工作内容。——乔治·贝克莱,《分析者》,第3节。

流数法者,通用之密钥也。近代算家籍之,既启几何之秘,亦探自然之奥。缘此,他们于发定理、解难题,远超古人。故当世称深几何者,其功若非专属流数,亦必以之为要。——乔治·贝克莱《分析者》第三节。

1916.我最终完全确信,在最基础的教学中就应该使用无穷小的语言和概念——当然,要辅以各种保障措施。——奥古斯塔斯·德·摩根,《格雷夫斯着〈w.R.汉密尔顿传〉》(纽约,1882-1889年),第3卷,第479页。

吾终确信,启蒙之教,当用无穷小之言与念——自当辅以诸般防护也。——奥古斯塔斯·德·摩根《格雷夫斯着〈w.R.汉密尔顿传〉》(纽约,1882-1889年),卷三,页四百七十九。

1917.应该先教学生如何对简单的代数表达式求导和积分,再尝试教他们几何学以及其他复杂的内容。在一开始就教授微积分的情况下,学生对符号的恐惧会被彻底打破。等学生掌握了这些符号,就可以开始教几何学或其他任何内容了。我还主张在学校里取消所谓的几何圆锥曲线。人们对圆锥曲线存在很多不必要的迷信。应该在学生年龄还小的时候就教他们微积分符号以及这些符号的最简单用法,而不是等到他们上大学之后再教。——S.p.汤普森,《佩里的数学教学》(伦敦,1902年),第49页。

宜先教生徒求导、积分简代数式,再授几何及其他繁难之学。初学即授微积分,则生徒对符号之畏俱破。既掌符号,便可授几何或其他诸科。吾亦主张,学校中废所谓几何圆锥曲线。世人于圆锥曲线多有妄执。当于童稚时,即授微积分符号及其简用,勿待至大学。——S.p.汤普森《佩里的数学教学》(伦敦,1902年),页四十九。

@流岚小说网 . www.liulan.cc
本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与流岚小说网立场无关。
如果侵犯了您的权利,请与我们联系,我们将在24小时之内进行处理。任何非本站因素导致的法律后果,本站均不负任何责任。