亲,双击屏幕即可自动滚动
第86章 物理学公理的数学处理、 数的无理性与超越性、素数问题(2/2)

此外,数学家有责任在每一种情况下,精确验证新公理与先前公理是否相容。

物理学家在其理论发展过程中,常常会因实验结果而被迫提出新假设,但对于这些新假设与旧公理的相容性,他们仅依赖实验或某种物理直觉来判断——这种做法在严格的理论逻辑构建中是不可接受的。

在我看来,验证所有假设相容性的工作也十分重要,因为为获得这种验证,我们必然会被迫对各公理进行精准表述,而这是最有效的推动方式。

到目前为止,我们仅探讨了与数学学科基础相关的问题。

事实上,对一门学科基础的研究始终极具吸引力,而检验这些基础也始终是研究者面临的首要问题之一。

魏尔斯特拉斯曾说:“始终要牢记的最终目标,是达成对学科基础的正确理解[19]。

但显然,要在科学领域取得进展,对特定问题的研究必不可少。”

的确,要成功研究一门学科的基础,就必须深入理解其特殊理论。

只有彻底且详细地了解建筑用途的建筑师,才能为建筑奠定坚实的基础。

因此,我们现在转向数学各分支的特定问题,首先来探讨算术与代数。

[14]参见博尔曼(bohlann)的《论保险数学》(UeberVersicherungsatheatik),收录于克莱因(Kle)与基克(Kiecke)编撰的《论应用数学与物理学》(Ueberangewaheatikundphysik),莱比锡,1900年。

[15]马赫(ach),《力学及其发展》(dieikihrerEnig),莱比锡,1901年,第4版。

[16]赫兹(hertz),《力学原理》(dieprzipienderik),莱比锡,1894年。

[17]玻尔兹曼(boltzann),《力学原理讲义》(Vorlesungenuberdieprcipederik),莱比锡,1897年。

[18]福尔克曼(Volkann),《理论物理学研究导论》(EfuhrungdasStudiudertheoretisphysik),莱比锡,1900年。

[19]《数学年刊》(ath.Annalen),第22卷,1883年。

7.某些数的无理性与超越性

埃尔米特(herite)关于指数函数的算术定理,以及林德曼(Ldeann)对该定理的推广,无疑会受到历代数学家的推崇。因此,正如A.胡尔维茨(A.hurwitz)已在两篇有趣的论文[20]《论某些超越函数的算术性质》(UeberarithtischeEigenschaftengewissertranszeerFunktionen)中所做的那样,沿着这条已开辟的道路继续深入研究,便成为一项亟待开展的任务。故而,我想概述一类问题,在我看来,这类问题应作为接下来的研究重点。在分析学中,某些重要的特殊超越函数,会在自变量取某些代数值时得到代数函数值,这一现象在我们看来尤为显着,值得深入探究。事实上,我们通常认为,即便自变量仅取代数值,超越函数的值一般也应为超越数;尽管众所周知,存在一些整超越函数,即便对所有代数自变量,其函数值均为有理数,但我们仍有充分理由认为,例如指数函数(文中未明确写出具体形式,此处按上下文保留“指数函数”表述),虽显然在自变量取所有有理值时函数值为代数数,但另一方面,当自变量取无理代数值时,其函数值始终为超越数。我们也可将该论断用几何形式表述如下:

在一个等腰三角形中,若底角与顶角的比值为代数数但非有理数,则底边与腰长的比值始终为超越数。

尽管该论断表述简洁,且与埃尔米特和林德曼已解决的问题具有相似性,但我认为,要证明这一定理难度极大;同样难以证明的还有下述命题:

对于代数底数(文中未明确写出具体符号,此处按上下文保留“代数底数”表述)和无理代数指数(文中未明确写出具体符号,此处按上下文保留“无理代数指数”表述),表达式(文中未明确写出具体形式,此处按上下文保留“表达式”表述),例如数(文中未明确写出具体数,此处按上下文保留“数”表述)或(文中未明确写出具体数,此处按上下文保留“或”后的留白),始终表示一个超越数,或至少是一个无理数。

可以肯定的是,要解决这些及类似问题,我们必须借助全新的方法,并且需要对特殊无理数与超越数的本质形成新的认识。

[20]《数学年刊》(ath.Annalen),第32卷,1888年。

8.素数问题

近来,阿达马(hadaard)、德拉瓦莱-普桑(deVallée-pos)、冯·曼戈尔特(Vonangoldt)等人在素数分布理论研究中取得了重要进展。然而,要完全解决黎曼(Rieann)在其论文《论小于给定数值的素数个数》(UeberdieAnzahlderprizahlenuntereergegebenenGr?sse)中提出的问题,仍需证明黎曼一个极为重要的论断的正确性,即:由级数(文中未明确写出具体级数,此处按上下文保留“级数”表述)定义的函数(文中未明确写出具体函数符号,此处按上下文保留“函数”表述)的所有零点,除了众所周知的负整数实零点外,其余零点的实部均为(文中未明确写出具体数值,此处按上下文保留“实部均为”后的留白)。一旦成功证明这一论断,接下来的问题便在于更精确地验证黎曼提出的“小于给定数值的素数个数”的无穷级数公式,尤其要确定:小于数值(文中未明确写出具体符号,此处按上下文保留“数值”表述)的素数个数与(文中未明确写出具体对数形式,此处按上下文保留“与”后的留白)的积分对数之间的差值,在(文中未明确写出具体变量,此处按上下文保留“在”后的留白)中,其无穷大的阶数是否确实不超过(文中未明确写出具体阶数,此处按上下文保留“不超过”后的留白)[21]。此外,我们还需确定:在统计素数个数时所观察到的素数偶然聚集现象,是否确实与黎曼公式中那些依赖于函数(文中未明确写出具体函数符号,此处按上下文保留“函数”表述)的首个复零点的项有关。

在对黎曼素数公式进行详尽研究之后,或许我们终将有能力尝试严格证明哥德巴赫问题[22],即:每个整数是否都可表示为两个正素数之和;进而研究另一个着名问题,即:是否存在无穷多对差值为(文中未明确写出具体差值,此处按上下文保留“差值为”后的留白)的素数对;甚至研究更具一般性的问题,即:对于线性丢番图方程(文中未明确写出具体方程,此处按上下文保留“线性丢番图方程”表述)(其中给定的整系数两两互素),是否总能找到素数解(文中未明确写出具体解的符号,此处按上下文保留“素数解”表述)和(文中未明确写出具体解的符号,此处按上下文保留“和”后的留白)。

但在我看来,下述问题同样有趣,且或许适用范围更广:将有理素数分布的研究成果应用于给定数域(文中未明确写出具体数域符号,此处按上下文保留“数域”表述)中的理想素数分布理论——这一问题的研究方向是考察与该数域相关的、由级数(文中未明确写出具体级数,此处按上下文保留“级数”表述)定义的函数(文中未明确写出具体函数符号,此处按上下文保留“函数”表述),其中求和范围遍历给定数域(文中未明确写出具体数域符号,此处按上下文保留“数域”表述)的所有理想(文中未明确写出具体理想符号,此处按上下文保留“理想”表述),而(文中未明确写出具体符号,此处按上下文保留“而”后的留白)表示该理想的范数。

在此,我还可提及数论中的另外三个特殊问题:一个涉及互反律,一个涉及丢番图方程,还有一个来自二次型领域。

[21]参见h.冯·科赫(h.vonKoch)即将发表于《数学年刊》的一篇文章[第55卷,第441页]。

[22]参见p.施泰克尔(p.St?ckel):《论哥德巴赫经验定理》(uberGoldbachsepirischestheore),《哥廷根皇家科学协会通讯》(Nachrid.K.Ges.d.wiss.zuG?ttgen),1896年;以及朗道(Landau)的相关文章,同刊,1900年。

@流岚小说网 . www.liulan.cc
本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与流岚小说网立场无关。
如果侵犯了您的权利,请与我们联系,我们将在24小时之内进行处理。任何非本站因素导致的法律后果,本站均不负任何责任。