9.任意数域中最一般互反律的证明
对于任意数域,需证明次幂剩余的互反律,其中表示奇素数;此外,还需证明当为的幂次或奇素数的幂次时的互反律。
我相信,通过对我所发展的次单位根域理论[23]以及我的相对二次域理论[24]进行适当推广,即可得到该互反律本身,以及证明该互反律所必需的方法。
[23]《德国数学会年度报告》,《论代数数域理论》(UeberdietheoriederalgebraisZahlk?rper),第4卷(1897年),第五部分。
[24]《数学年刊》,第51卷;以及《哥廷根皇家科学协会通讯》,1898年。
10.丢番图方程可解性的判定
给定一个丢番图方程,该方程包含任意多个未知数,且系数为有理整数:设计一种方法,通过有限次运算,判定该方程是否存在有理整数解。
11.具有任意代数数值系数的二次型
当前我们对二次数域理论[25]的认知,使我们能够成功研究包含任意多个变量、且系数为任意代数数值的二次型理论。这尤其引出一个有趣的问题:对于给定的、系数为代数数值且包含任意多个变量的二次方程,求其在由系数确定的有理代数域中的整数解或分数解。
下述重要问题可作为连接代数与函数论的桥梁:
[25]希尔伯特(hilbert),《论狄利克雷双二次数域》(UeberdendirichletsbiquadratisZahlenk?rper),《数学年刊》,第45卷;《论相对二次数域理论》(UeberdietheoriederretivquadratisZahlenk?rper),《德国数学会年度报告》,1897年,以及《数学年刊》,第51卷;《论相对阿贝尔域理论》(Ueberdietheoriederretiv-AbelsK?rper),《哥廷根皇家科学协会通讯》,1898年;《几何基础》(GrundgenderGeotrie),莱比锡,1899年,第八章,第83节[汤森德(townsend)英译版,芝加哥,1902年]。另可参见G.吕克尔(G.Ruckle)的博士论文,哥廷根,1901年。
12.将克罗内克阿贝尔域定理推广至任意有理代数域
每个阿贝尔数域都可由有理数域通过单位根域的合成得到,这一定理归功于克罗内克(Kronecker)。这一积分方程理论中的基本定理包含两部分内容,具体如下:
第一部分:回答了关于方程的数量与存在性问题——即存在多少个、是否存在这样的方程:它们具有给定的次数、给定的阿贝尔群,且相对于有理数域具有给定的判别式。
第二部分:指出这类方程的根构成一个代数数域,该数域与将指数函数的自变量依次取所有有理数值时所得到的数域一致。
第一部分内容涉及通过代数数的群与分歧性来确定某些代数数的问题。因此,这一问题与“根据给定黎曼曲面确定对应代数函数”这一已知问题相对应。第二部分内容则通过超越方法(即借助指数函数)给出了所需的代数数。
由于虚二次数域是除有理数域外最简单的数域,因此产生了将克罗内克定理推广到这一情形的问题。克罗内克本人曾断言,二次域中的阿贝尔方程可由具有特殊模的椭圆函数变换方程给出,由此,椭圆函数在此处扮演的角色,与前文情形中指数函数所扮演的角色相同。目前尚未有人给出克罗内克这一猜想的证明;但我相信,基于h.韦伯(h.weber)借助我所建立的类域纯算术定理发展而来的复乘法理论[26],要证明这一猜想不会遇到太大困难。
最后,将克罗内克定理推广到如下情形,在我看来具有至关重要的意义:不再以有理数域或虚二次数域为基础,而是以任意代数域作为有理域。我认为,这一问题是数论与函数论中最深刻、影响最深远的问题之一。