亲,双击屏幕即可自动滚动
第87章 一般互反律的证明、完备函数系的有限性证明等问题(2/2)

从多个角度来看,这一问题都是可研究的。在我看来,解决该问题算术部分的最重要关键,是任意给定数域中次幂剩余的一般互反律。

至于该问题的函数论部分,研究者在这一极具吸引力的领域开展工作时,可借助单变量代数函数理论与代数数理论之间显着的类比关系。亨塞尔(hensel)[27]提出并研究了代数数理论中与“代数函数幂级数展开”相对应的类比问题;兰茨贝格(Landsberg)[28]则探讨了与“黎曼-罗赫定理”相对应的类比问题。黎曼曲面的亏格与数域类数之间的类比关系也十分明显。仅以最简单的情况为例:一方面考虑亏格为(原文未明确写出具体亏格符号,此处按上下文保留“亏格为”后的留白)的黎曼曲面,另一方面考虑类数为(原文未明确写出具体类数符号,此处按上下文保留“类数为”后的留白)的数域。“证明黎曼曲面上存在处处有限的积分”这一问题,对应着“证明数域中存在整数(原文未明确写出具体整数符号,此处按上下文保留“整数”表述),使得数(原文未明确写出具体数的符号,此处按上下文保留“数”表述)生成一个相对于基域无分歧的二次域”这一问题。在代数函数理论中,众所周知,边值问题(Rahaufgabe)的方法可用于证明黎曼存在定理。而在数域理论中,证明上述整数(原文未明确写出具体整数符号,此处按上下文保留“整数”表述)的存在性,同样是难度最大的问题。要完成这一证明,必须借助“数域中总存在与给定剩余性质相对应的素理想”这一定理的支撑。因此,后一事实正是数论中与“边值问题”相对应的类比对象。

众所周知,代数函数理论中的阿贝尔定理方程,给出了“黎曼曲面上的给定点数是该曲面上某一代数函数的零点”这一结论的充要条件。在类数为(原文未明确写出具体类数符号,此处按上下文保留“类数为”后的留白)的数域理论中,与阿贝尔定理完全对应的,是二次互反律方程[29](原文未明确写出具体方程,此处按上下文保留“二次互反律方程”表述)。该方程表明:理想(原文未明确写出具体理想符号,此处按上下文保留“理想”表述)是数域的主理想,当且仅当数(原文未明确写出具体数的符号,此处按上下文保留“数”表述)关于理想(原文未明确写出具体理想符号,此处按上下文保留“理想”表述)的二次剩余为正。

由此可见,在刚才概述的问题中,数学的三个基础分支——数论、代数与函数论——实现了最紧密的联系。我确信,尤其是多变量解析函数理论,若有人能成功找到并研究这样一类函数(这类函数对任意代数数域所起的作用,相当于指数函数对有理数域、椭圆模函数对虚二次数域所起的作用),其内容必将得到显着丰富。

接下来转向代数领域,我将提及一个来自方程理论的问题,以及一个由代数不变量理论引出的问题。

[26]《椭圆函数与代数数》(ElliptischeFunktionenundalgebraischeZahlen),布伦瑞克,1891年。

[27]《德国数学会年度报告》,第6卷;以及即将发表于《数学年刊》的一篇文章[第55卷,第301页]:《论代数数的幂级数展开》(UeberdieEnigderalgebraisZahlenpotenzreihen)。

[28]《数学年刊》,第50卷(1898年)。

[29]参见希尔伯特(hilbert):《论相对阿贝尔数域理论》(Ueberdietheoriederretiv-AbelsZahlk?rper),《哥廷根通讯》(G?tt.Nachri),1898年。

13.能否借助仅含两个自变量的函数求解一般七次方程

列线图解法(Noography)[30]研究的问题是:通过绘制依赖于任意参数的曲线族来求解方程。显然,系数仅依赖于两个参数的方程的每个根(即每个二元函数),都可依据列线图解法的基本原理,以多种方式表示出来。此外,有一大类含三个或更多变量的函数,显然无需借助可变元素,仅通过这一原理就能表示——即所有可通过以下方式生成的函数:先构造一个二元函数,再将该函数的两个自变量分别设为二元函数,接着再将这些新的自变量依次替换为二元函数,如此循环下去,且允许进行任意有限次的二元函数嵌套。例如,任意多个自变量的有理函数都属于这类可通过列线图表构造的函数;因为有理函数可通过加、减、乘、除运算生成,而每种运算都仅产生二元函数。不难看出,在有理数域中可通过根式求解的所有方程的根,也属于这类函数;因为此处除了四种算术运算外,仅需增加开方运算,而开方运算本质上是一元函数。同理,一般的五次和六次方程也可通过合适的列线图表求解;因为借助仅需开方运算的契尔恩豪森变换(tshaentransforations),可将这些方程化为系数仅依赖于两个参数的形式[第26页]。

然而,一般七次方程的根作为其系数的函数,很可能不属于这类可通过列线法构造的函数,即无法通过有限次二元函数嵌套来构造。要证明这一点,需先证明:七次方程(原文未明确写出具体方程,此处按上下文保留“七次方程”表述)无法借助任何仅含两个自变量的连续函数求解。容我补充说明,我已通过严格的方法证实:存在含三个自变量(原文未明确写出具体自变量符号,此处按上下文保留“三个自变量”表述)的解析函数,无法通过有限次二元函数嵌套得到。

不过,通过引入辅助可动元素,列线图解法能够构造含两个以上自变量的函数。近期,多卡涅(doe)已在一般七次方程的求解中证明了这一点[31]。

[30]多卡涅(doe),《列线图解法教程》(traitédeNoographie),巴黎,1899年。

[31]《论七次方程的列线图解法求解》(Surresotionnoographiqnedeléquationduseptièdegré),《法国科学院院报》(ptesrend),巴黎,1900年。

14.某些完备函数系的有限性证明

在代数不变量理论中,我认为“型的完备系是否有限”这一问题值得特别关注。近期,L.毛雷尔(L.aurer)[32]成功将我与p.哥尔丹(p.Gordan)在不变量理论中证明的有限性定理进行了推广——不再以一般射影群为基础定义不变量,而是将任意子群作为不变量定义的基础。

A.胡尔维茨(A.hurwitz)[33]已在这一方向上迈出了重要一步。他通过巧妙的方法,成功对“任意基型的正交不变量系具有有限性”这一结论进行了完全一般性的证明。

@流岚小说网 . www.liulan.cc
本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与流岚小说网立场无关。
如果侵犯了您的权利,请与我们联系,我们将在24小时之内进行处理。任何非本站因素导致的法律后果,本站均不负任何责任。