一篇关于概率的论述
大约在1830年,《实用知识文库》中出版了一本关于《概率》的小册子,这是已故的约翰·卢伯克爵士{611}和德林克沃特(贝休恩)先生{612}的共同作品。这是该主题最好的入门导论之一。一位装订工把我的名字印在了封面上(该作品是匿名的),结果无论如何都无法让人们摆脱这本书是我写的想法。我不知道我否认了多少次,从我自己作品中的一段话到写给《泰晤士报》的一封信:而且我甚至不确定我现在是否成功地澄清了事实。因此,我再次记录这一事实。但既然一本书除非包含悖论——或与普遍观点或做法相悖的内容——否则无权出现在这里,我将提出两个小悖论。负责具体安排的约翰·卢伯克爵士强烈反对theoryofprobabilities中的最后一个词,他主张应使用单数形式的probability;我认为他非常正确。
{280}
第二个情况是:我的朋友J.L.爵士,拥有众多才智品质和社交品质,但有一点性格特征我既不愿称之为坏,也无法称之为好;他从不使用俚语表达。他将这种厌恶推至极致,以至于即使在关于机会博弈的着作中,也无法忍受使用headtail(硬币的正反面):所以他用了obversereverse。我第一次看到这个时很惊讶:但令我高兴的是,我发现环境的力量最终击败了他。他不得不从赛马场中选取一个例子,而其中一匹马的名字叫bessybed(贝西·贝德拉姆,意为疯人院贝西)!而他并没有把她写成Elizabethbethlehe(伊丽莎白·伯利恒),而是强迫自己遵循骑师们的叫法。
·[《法国皇家彩票罗马历书,或上述彩票股东与收款人必备之新年礼物》。.梅努·德·圣梅斯曼着。巴黎,1830年。12开本。]
这本书包含了从1758年到1830年法国彩票的所有开奖结果(每月两到三次)。它面向那些认为可以根据过去预测未来开奖结果的人:书中提供了各种关联数字组来帮助他们。其原理是,任何长时间未发生的事情必定很快会发生。例如,在轮盘赌的红与黑中,当红色连续赢了五次之后,精明的赌徒会押注黑色,因为他们认为最终必定会到来的转变比之前更近了。确实如此:但观察会表明,如果记录下大量出现红色连续五次的情况,接下来的那一局将同样频繁地使连续次数变成六次,就像转而有利于黑色一样频繁。但赌博者的推理是不可救药的:如果他们转而研究化圆为方,将能避免多少痛苦啊。一位1823年的作家,似乎对巴黎和伦敦的赌博情况了如指掌,他说职业赌徒{281}被一种对未来毁灭的隐秘预感所困扰,他们仿佛在赌桌上对庄家说着角斗士对皇帝说过的话:将死之人向你致敬{613}。
在法国彩票中,一次从90个号码中抽取5个。全国任何地方的任何人都可以就任何他喜欢的事件下注任何金额,例如27号会被抽中;42号和81号会被抽中;42号和81号会被抽中,且42号在先;依此类推,如果他愿意,甚至可以押注确定顺序的五连号,即押注五个给定号码按给定顺序出现。例如,在1821年7月,其中一次开奖结果是
846166413。
一个赌徒实际上预测中了这五个号码(但未预测顺序),并以微小的赌注赢得了131,350法郎。梅努先生似乎暗示,选择哪些号码的提示是在他自己的办事处给出的。另一个人在这次开奖中押中了四连号8,16,46,64,赢得了20,852法郎。这些赢利,当然被广泛宣传:而对于输钱的众多人则只字不提。那些研究过算术概率的人可以从赢得简单四连号的数量推断出参与下注的人数之巨:1822年,14次;1823年,6次;1824年,16次;1825年,9次,等等。
所谓的机遇或偶然性中的悖论,本身就可以编成一本小册子。世人都明白存在一个长期趋势,一个总体平均值;但世界上很大一部分人惊讶于这个总体平均值竟然可以被计算和预测。有许多显着的验证案例;其中一个与化圆为方有关。我在此介绍这个案例和另一个案例。一次又一次地抛掷一枚便士,直到正面出现,这不会太久:让我们称这为一个组。因此,h是最小的组,th是次小的组,接着是tth,等等。为简略起见,让我们将在正面出现之前出现七次反面{282}的组记为t^{7}h。在大量的组试验中,大约一半将是h;大约四分之一是th;大约八分之一是t^{2}h。布丰{614}尝试了2,048组;后来也有几个人效仿他。如果我给出所有结果,将有助于阐明这个原理;即,多次试验将以道德上的确定性显示出接近——而且试验次数越多,接近程度越高——清醒推理所预测的那个平均值。第一列是理论上的最可能数字:下一列是布丰的结果;后面三列是我的通讯员通过试验获得的结果。每种情况下的试验次数都是2,048。
(此处应有一个表格,但作为AI,我无法直接渲染表格。表格内容如下:)
组合理论值布丰结果通讯员1通讯员2通讯员3
h1,0241,0611,0481,0171,039
th512494507547480
t^{2}h256232248235267
t^{3}h12813799118126
t^{4}h6456717267
t^{5}h3229383233
t^{6}h1625171019
t^{7}h889910